🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
🤔Что делать, если в небольшом размеченном наборе сильно несбалансированные классы, но среди неразмеченных данных, возможно, есть представители миноритарного класса
Когда классы сильно несбалансированы, модель может вообще не научиться распознавать редкий класс — особенно если в размеченных данных он почти не представлен. Это особенно критично, если модель начинает обучение уже с перекосом в сторону большинства.
🛠Как с этим справиться
1. Усиливаем вклад миноритарного класса в функцию потерь — Используем взвешивание классов или focal loss, который автоматически усиливает вклад трудных примеров.
2. Применяем регуляризацию на неразмеченных данных — Например, consistency regularization, при которой модель должна давать стабильные предсказания при слабых искажениях входа.
3. Активный отбор редких примеров среди неразмеченного пула — Можно применять кластеризацию и отбирать для разметки точки из «редких» кластеров — это метод active cluster labeling.
4. Анализируем предсказания модели на неразмеченных данных — Если модель слабо уверена в каком-то сегменте — возможно, это и есть миноритарный класс. Такие точки можно приоритизировать для ручной разметки.
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?
Find Channels On Telegram?
Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.
Библиотека собеса по Data Science | вопросы с собеседований from no